P\,

AD A093'1 86

FILE_CO

N

A UNCLASS IFIED ' e
llCUhITV CLASMVICATION OF THIS PAGE (When Dale Eniered)

READ INSTRUCTIONS
BEFORE, COMPLETING FORM

' REPORT DOCUMENTATION PAGE 5

T REPOAT NGMBER nu/qu ® 1, GOVT ACCE o 3 IPIENT'S CATALOG HUMBER
AIM 554 B e) P]
4/_'rm.u (end Subliile) M E.;, [2% 41,'rvu OF REPORT & umoo CovERED
/EMACS MANUAL FOR ITS_ USERS ' / s L E #Memorandum g //
/ s / ¥, v §. PERPORMING ORC: REPORT NUMBEN
7. AUTHO monm | cT"ancT‘n GRANT NUMBIA(e)
d) Richard M/Stal'lman / (/_5 NOOOM -75-C- 0643,
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. FROGRA I.E T ROJ CY, TASK
Artificial Intelligence Laboratory / ARER UWORKUNIT NUMHERS
545 Technology Square //)) Z ~Z{
Cambridge, Massachusetts 02139
11, CONTROLLING OFFICE NAME AND ADDRESS T 12 REPORT-DATE
Advanced Research Projects Agency (/QQ % June ¥980 /
1400 Wilson Blvd , -~ 1. "NUMDER OF FAGES
Arlington, Virginia 22209 218
14, MONITORING AGENCY NAME & ADD;ESS(M difterent from Controlling Oflice) 15. SECURITY CLASS. (of thie repert,
Office of Naval Research _ UNCLASSIFIED

Information Systems

Ariington, Virginia 22217

152, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Dnstribution of this document is unlimited.

WAI% 55

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side Il necessary and identity by block number) ~——

T YT CURLTIY PRI 100

CTRETD 70 DDC COUTAT

f V]

lerf"‘;:‘[‘ce Manual SUKPER OF PAGES SHICH L. 0
L IISTSLY,

'Disp1ay Editor r

.r’f'This manual documents the use and simple customization of the display editor

20. ABSTRACT (Continue on reveres side 1l necessary and identity by dlock number)

EMACS with the ITS operating system. The reader is not expected to be a
programmer. Even simple customizations do not require programming skill,
but the user who is not interested in customizing can ignore the scattered
customization hints. This is primarily a reference manual, but can also be
used,a primer.

S

DD ' 1473&(EDITION OF 1 MOV 68 13 OBsOLETE UNCLASSIFIED [

S/N 0302-014- 6601 | —
IMCURITY CLASSIFICATION OF THIS PAGE (When Dats Rntered)

L)Y s 4

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE CCPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

MASSACHUSETTS INSTIHUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

8 June 1980

Al Memo 554

FMACS Manual for I'TS Users

by
Richard M. Stallman

A reference manual

for the extensible, customizabie, selfdocumenting {7 o~

! -
{ R
i 3

reai-time display editor i

This manual corresponds to EMACS version 147 :

Ry I W gl

‘This report deseribes work done at the Artificial ntelligence Laboratory of the Massachusetts Institute of
Technology. Suppoert for the labetatory’s research is provided in part by the Advanced Research Projects
Ageney of the Department of Defense under Otfice of Naval Rescarch contract NOO14-75-C-0643.

IR LAl

TR VN

e

Ui g

RSP RMATIA St Ak 2

> ‘teble of Contents

[] Table of Contents

Introduction 3

1. The Organization of the Screen) S

1.1. "The Mode Line 6

2. Character Sets and Command Input Conventions 9

2.1. The 9-bit Command Character Set 9

2.2, Prefix Characters 10

2.3. Commands, FFunctions, and Variables 10

24. Notational Conventions for ASCIH Characters 11

3. Basic Editing Commands 13

: 3.1. Inscrting Text 13

3.2, Muoving the Cursor 13

3.3. Lrasing Text : 14

: 34. Viles 14

3.5. Help 15

3.6. Using Blank Lines Can Make Editing JFaster 15

: 4. Giving Nunteric Arguments to EMACS Commands 17

4.1, Autoarg Mode 18

5. Fatended {Meta-X) Commands and l:'un('!ions i9

5.1. lssuing Extended Commands i9

2. Arcane Information about M-X Commands 21

7 6. Moving Up And Down Levels 5

6.1. Subsystems 25

6.2. Recursive Editing Levels 26

6.3. Lxiting Levels; Exiting EMACS 26

7. Sclf-Documentation Commands 29

3 8. “Vhe Mark and the Region 31
1 8.1. Commands to Mark 'Textual Objects 32

8.2. ‘Ihe Ring of Marks 32
£ 9. Killing and Moving Text - 35
i 9.1. Deletion and Killing : 35 :

z 8.2. Un-Killing 37
4 9.3. Other Ways of Copying Text 32 :
18. Scarching 41
1. Commands for English ‘Text 43
11.1. Word Commands 43

11.2. Scntence and Paragraph Commands . 4

11.3. Indentation Commands for Text 46

114, Text Filling 47

11.5. Case Conversion Commands 49

it

11.6. Fout-Changing
11.7. Underiining

12, Commasids for Fixing Typos

12.1. Killing Your Mistakes
12.2. Transposition
12.3. Case Conversion

13. Iile Handliag

13.1. Visiting Files

13.2. How to Undo Drastic Changes to a File

13.3. Auto Save Mode: Protection Againsi Crashes
13.4. Listing a Fife Directory

13.5. Clcaning a File Directory

13.6. DIRED, the Directory Editor Subsystem
13.7. Miscellancous File Operations

13.8. The Dircctory Comparison Subsystem

14. Using Maltiple Buffers

14.1. Creating and Sclecting Buffers
14.2. Using Existing Buffers
14.3. Killing Buffers

15. Controlling the Display
16. Two Window Mode

16.1. Muliiple Windows and Multipic Buffers

17. Narrowing

18. Commands for Manipulating Pages

18.1. Editing Guly Onc Page at a Time

19. Replacement Commands

19.1. Query Replace
19.2. Other Scarch-and-teop Functions
19.3. TETO Search Strings

20. Iditing Programs

2.

20.1. Major Modes

20.2. Compiling Your Program

20.3. Indestaticn Commands for Code

20.4. Automatic Display Of Matching Parcntheses
20.5. Manipulating Comments

20.6. 1.isp Mode and Muddle Mode

20.7. L.isp Grinding

20.8. Editing Assembly-1Language Programs

20.9, NMajor Modes for Other Languages

‘The TAGS Package.

21.1. How to Make a Tags File for a Program

21.2. How to Teil EMACS You Want to Use TAGS
203, Junmiping toa Tag

21.4. Other Operations on Tag ‘Fables

EMACS Manual for I'1'S Users

50
51

53
53

55
57
57
59
59

63

67
67
68
58

n
3
74
7
”
80
3

83
84
85

87

87
88
89

91
93

91
98

101

101
102
103
103

S NS G S AV

i el By ' el ¥
il “Mrwmmﬁfr-b‘immwm.mf\lawmuwm«mmmmwmmumwh\‘,mww.wmmvu[mmnmnmmﬂuuum ik
il b ¥

T PP TIE

o= RIS
Ry
* Fable of Contents
- 21.5. What Constitutes a Tag 105
% 21.6. Adding or Removing Source Files 106
- 21.7. How a'Tag Is Described in the Tag Table 107
= 21.8. Tug Tables for INIFO Structured Decumentation Files 108
g 22. Simple Customization 111
%i 22.1. Minor Modcs 111
H 22.2. Libraries of Commands 112
£ 22.3. Variables 114
22.4. The Syntax Table 115
22.5. S Flags 117
22.6. Local Variables in Files 118
227, Init Files and EVARS Files 120
228, Kevbuard Macros 124
23, The Minibuffer 121
24, Couesting Mistahes and EMACS Problems 129
24.1. Cancelling a Conumand 129
24.2. What io 1o if EMACS Acts Strangely 130
24.3. Undoing Changes to the Buffer 132
244, Journai Files 133
24.5. Reporting Bugs 136
25, Word Abbreviation Input 141
23.1. Basic Usage 142
25.2. Advance ' Usage 145
i 25.3. ‘Teco Details for Extension Writers 148
26. The PICTURE Subsystem, an Fditor for Text Pictures 151
1 27, Sesting Functions 153
Appendix . Particular Types of Terminals 155
3]
fig 1.1, Ideal Keyboards 155
5 1.2, Kevboards with an "Edit” key 156
3 1.3, ASCH Keyboards 156
! 14. Upper-casc-only ‘T'erminals 157
1.5. The SLOWLY Package sor Slow Terminals 158
B
Appendix I, Use of EMACS from Printing Terminals 161
Glossary 163
Comusand Index m
= Catalog of Libraries 185 %
;‘ Index of Variables 189
% FMACS Command Chart s of 03/27/80) 195
=i Indey 23

Dot b s i

RN AN P i, v o

i
#
SRR Pl asbows

YRR

w3

A o 10

Preface

Preface

This manual documents the use and simple customization of the display cditor EMACS with the
I'TS operating system. “The reader is not expected to be a programmer. Even simple customizations do not

sequire programming skill. but the user who is not interested in customizing can ignore the scattered
custormization hints,

I'his is primaily a refeience manugl, but can also be used as a primer. However, | recommend that the
newcomer first use the on-line, learn-by-doing tutorial TEACHEMACS, by typing [TEACHEMACS{cr>
vhile in HACERN. With i, you Iearn EMACS by using EMACS on a specially designed Tile which descetibes

commands, tel's you when to try them, and then explains the results you sce. “This gives @ more vivid
introduction than a printed manual.

On fisst seading, you need not make any attempt to menorize chapters 1 and 2, which describe the
notational comentions of the manual and the general appearance of the EMACS display screen, T is cnough
to be aware of what questions age answeted in these chapters. so you can seler back when you later become
interested in the answeis. After reading the Basic Hditing chapter you should practice the commands there.
The next few chapters desciibe fundamental techniques and concepts which are referred to again and again,

I is best to understand them thoroughly, experimenting with them if necessary.

T'o find the documentation on a particular command, Jook in the index if you know what the commmand is.
I you know vaguely what the command doces, look in the command index. “The command index contains a
line or two about cach command, and a cross-reference o the section of the manual which describes the

command i more detail. Related conumands are grouped together. ‘There is also a glossary, with a cross
reterence for cach teim.

The manual is availuble in three forms: the published form, the ¥ IPT form, and the INFFO form. The
published form is pristed by the Autificizl Intelligence lab. The LT forns is available on Jine for printing on
unsuphisticated hard copy devices such as terminals wnd line printers. "Phe INEFFQ form is Tor on-line perusal
with the INFFQ progiam. All three forms are substantially the same. “There are also two versions of the text:

one for use with FI'S, and one for use with Twenex, DEC's "TOPS-20" system. Both versions are available in
all three forms.

EMACS is available for distribution for use on Fenex and Twenex systems (1t does not run on Bottoms- 10,
and the convenion wauld not be casy). Mail us a 400 foot mag tape if you want it. 1t does not cost anything;
instead. you must join the EMACS software-sharing communc. The conditions of membership are that you
must scid back any improvenients you make to EMACS, including any libraries you write, and that you must

not redistribute the system except exactly as you got it, complete. (You can also distribute your

i3t L B

YYIAT,

i Il L D

T

o A

L AN b AR

A0 o

MMMM

i

T

wMi

EMACS Manual for I'FS Users

customizations, separately.) It is-pathetic to:hear:from-sitcs-which .reccived.incomplete copics_ lacking the

sources. asking me ycars later-whether sources are available.

FFor information on-the underlying philosophy 0Ff EMACS:.and-the.lessons fearned:from its development,
write to aic for a copy of Al memo 519, "EMACS, the Extensible, Customizable-Sclf-Documenting Display

Editor", or sciid Arpanct mail to RMS@MIT-Al

Yours in -hackiag,

/ "z \1/2 :
<X D :
\ / !

"Richard-M. Stallman

MI'T Artificial Intelligence Lab
545 Tech Square, rm 913
Cambridge, MA 02139

(617) 253-6765 !

G 1 ikl b

et

YL T

1y e g

P

T T Gt A kot i by it

d

Introduction

Introduction

R —— L LT

You are about to read about EMACS, an advanced, sclf-documenting, customizable, extensible real-time
display cditor.

We say that EMACS is a display editor because nonmally the text ocing edited is visible on the screen and

is updated automaticatly as you type your commands. Sce section | [Display), page 5.

We call it « real-time editor because the display is updated very frequently, usually after cach character or
pair of characters the user 4 pes. This minimizes the amount of information you must heep in your head as

vou edits. Sce section 3 [Basicl. page 13.

We call FMACS advanced because it provides fucilitics that go beyond simple insertion and deletion;
filling of text: automatic indentation of programs: viewing two files at once: and dealing in terms of
chanacters, words, lings, sentences, paragraphs, and pages. s well as expressions and comments in scveral
different progranuming languages. 1t is much casier o type one comimand meaning “go to the end of the

paragsaph” than to find the desired spot with repetition of simpler commands,

Self-documenting means that at any time you can type atseecial character. the “Help® key, to find out what
your aptions are. You can aiso usc it to find out what any command docs, or to find all the commuands that

pettain to i topic. See scction 7 [{leip). page 29.

Customizable means that you can change the definitions of EMACS commands in little ways. For
cxample, if you use a progranming Linguage in which comments start with <** and end with **>_ you can teli
the EMACS commieat numipulation commands to usc those strings. Another smit of customization is
rearrangecent of the command set. For example, if you prefer the four basic curser motion commands (up,
down, left and right) on keys in a diamond pattern on the keyboard, you can have it. See scction 22.1
[MinorModes). page 111.

A

Extensible means that you can go beyond simple customization and write centirely new commands,
programs in the language TECQ. EMACS is an "onlinc cxtensible™ system, which means that it is divided
into many functions which call cach other, any of which can be redefined in the middle of an editing session.
Any part of PFMACS can be replaced without making o separate copy of all of EMACS. Many already written i
extensions are distributed with EMACS, and some Gncluding DIRED, PAGE, PICTURE, SOR'T, TAGS,

and WORDAB) we docamented in this sanual, Although only a programmer can write an extension,

anybody can use it afterward.

Extension requires programming in "TECO, a rather obscure Lainguage. f you are clever and bold, you

[——"1

EMACS Manual for I'1'S-Users

miight wish to learn how. Sce the file INFO;CONV >, for advice on learning TECO. ‘This manual docs not

cven try to explain how to write THCO programs, but it does contain soume notes which arc useful primarily to
the cxtension writer.

W 6 e e e

SR SSAMAD I SO AALD A it e

‘hmlllﬂu&

bl

A

B s ki A bk

"

DT TR

1

NS

RN LY

|

ey

M gy

t
i i
ikl 1L

“The Organization of the Screen 5

1. The Organization of the Screen

EMACS divides the screen into several arcas, cach of which contains its own sorts of infonnation. The
bigzest arca, of course, is the one in which you usually sec the text you are cditing. ‘I'ie terminal's cursor
usuatly appears in the middle of the text, showing the position of "point”, titc location at which editing takes
place. While the cursor appears to point as a character, point should be thought of as berween two characters:
it points before the character that the cursor appears on top of. Tenminals have only one cursor, and when
output is in progress it must appear where the typing is being done. This does not mean that point is muoving.

Itisonly that FMACS has ne way to show you the location of point except when tire tenninal is idle.

The C-X = command tells you precisely what is in the teatlif it is not clear frma iite display. (If youarea
begimner, don’t worry if you don’t understand this paragraph). 1t prints the row aid column of the location of
the cursor on the sereen, and the numeric code for the character after the cursor. Sce section e [Filling),

page 47.

‘The top lines of the sereen are usually available for text but are sometimes pre-empted by an “error
message”, which says that some command you gave was illegal or used improperly. or by typeout from a
command (such as. a listing of a fiic dircctory). The error message or typeout appears there for your
information, but it is not part of the file you arc editing, and it gozs away if you iype any command. If you
wanit to make it go away immediately but not do anything clsc. you can type a Space. (Usually a Space inserts
itscelf. but when there is an error message of typeout an the screen it does nothing but get rid of that.) The
terminal’s cursor always appears at the end of the error message or txpeout. but this docs not mean that point

has moved. "Fhe cursor moves back (o the location of point afier the error message of typcout goes zway.

A few lines at the bottom of the sereen compose what is called “the echo arca”™. “Fchoing™ means printing
out the commands that vou type. EMACS commands are usually not echoed at all, but if you pause for more
than a sccond in the middle of a1 multi-character conunand then the whole command (including what you
have typed so far) is echoed. “This behavior is designed to give confident users optimum respoase. while

giving nervous users information on what they arc doing.

EMACS also usces the ccho arca for reading and displaying the arguments for some commands, such as

searches, and for printing inforniation in response to certain commands.

“The fine above the echo arcais known as the "mode line®. 1Cis the fine that usually starts with “EMACS
(something)”. 1ts purpose is 1o tell what is going onin the EMACS, and to show any reasons why comnungds
wnary not be interpreted in the standard way. The mode lise is very important, and . you are surpriscd by how

EMACS reacts to your commands you should look there for enlightenment

s

IR L CARS!

o LA

i

o iyt
e e e

e

EMACS Manual for 1S Uscrs

1.1. The Mode Line

‘The normal sitearc is that charicters you type are interpreted as EMACS commands. When this is so,
you are at “top level”, and the maode line has this format:

EMACS type (major minor) bfr: file --pos-- *

“type” is usually not there. Whien it is there. it indicates that the EMACS job you arc using is not an
ordinary one, in that it is acting as the servant of some other job. A type of "LEDIT™ indicates an EMACS
scrving one or more Lisps, while s type of "MAILT indicates an EMACS which you gt by asking for an
“edit escape” whife compuosing mail to send. The type can also indicate a subsystem which is mnning.'such as
RMAIL. The type isstored internally as a string in the varable Editor Type. The variable is normatly zero.

"nrjor” is atwins the name of the "major mode”™ you are in. Atany time. EMACS & in ane and only one
of its powible majoy modes, The major modes availuble include Fundamentai maode, Text mode (whikh
EMACS arts out in), Lisp mede. PASCAL maode, and others. Sce section 20 [Major Modes), page 87, for

details of how the modes difier and how to select one. Sometimes tic name of the major mode is followed

immediately with another name inside square-brackets (7} - J*). ‘This name is called the “suhmaode”. The

submode indicates that you are "inside” of a command which causcs vour editing commands to be changed

emporarily, but dots not change w/nir 1oxt you are editing. A subinode is a kind of recussive editing level.
See section 6.2 [Submaodcs], page 26.

‘minor” is a list of some of the minor modes which are tumed onat the momeat. "Fill™ means that Auto
it mede is on. "Save™ micans that Auto-saving is an. "Save{of)™ means that Auto-saving is on in gencral
but momentarily wmed off {it was overridden the last time a file was sclected). “Atom™ means that Atom

Word mode is on. "Abbrev” means that Word Abbrev mode is on. "Ovwst™ means that Overwrite mode is

on. Sce scction 22,7 iMinor Modes], page 111, for more information. "Def™ mcans that i keylxrrd macro is

5 being defined: altheugh this is not exactly a minor mode., it is still uscful to #e reminded about. See

section 22.8 {Keyboard Macrs), page 124, :

“bft” is the name of the currently sclected buffer. Each buffer has its own namce and holds a file being

cdited: this is how EMACS can hold several files at once. But at any time you arc editing only onc of them, :

the "selecied” buffer. When we speak of what some command docs to "the bufler™, we are talking about the
currently sclected buffer. Multiple bufTers makes it casy to switch around between severs files, and then it is .
very usclul thzt the mode line tells you which onc you arc editing at any time. However, before you leamn
how to use multiplc huffers, you will always be in the buffer called "Main™, «which is the only onc which cxists

A 19
e

{

i 8

when EMACS stans up. If the name of the buffer is the same as the first name of the file you are visiting,

then the buffer namc ss feft out of the mode line. See section 14 [Buffers]. pagce 67, for huw to use more thain
one bufferin one EMACS.

I'he Organization of the Screen

“file" is the name of the file that you are editing. 1t is the last file that was visited in the buffer you are in.

If"(ROY" (for "read only") appears after the filename, it means that if you visit another file in the same
buffer then changes you have made to this file will be lost unless you have explicitly asked to save them, Sce
: section 13.1 [Visiting], page S5, for more information. If there is no "(RO)" and you visit anothei file in the
: same buffer, EMACS will offer o save your changes first, if there are any changes.

‘The star at the end of the mode line means that there are changes in the buffer which have not been saved
in the file. 1 the file has not been changed since it was read in or saved, there is no star.

"pos” tells you whether there is additional text above the top of the screen, or below the bottom. If your
file is small and it is all on the screen, --pos- is omitted. Otherwise, it is --TOP-- if you arc looking at the

beginning of the file, --BOT-- if you are looking at the end of the file, or --un%-- where nn is the percentage
of the file above the top of the screen.

Sometimes you will see --MORE-- instead of --nn%--. “This happens when typeout from a command is too
long to fit on the screen. 1t means that if you type a Spiace the next scieenful of information will be priited.
[T you are not interested. typing anything but a Space will cause the rest of the output 1o be discarded. Typing
a Rubout will discard the output and do nothing else. ‘Typing any other command will discard the rest of the

output and also do the command. When the output is discarded, "FLLUSHED" is printed after the
~-MORE--,

. So much for what the mode line says at top level. When the modc linc doesi't start with "IEIMACS”, and

st

doesn’t look anything like (he Breakdown given above, then EMACS is not at top level, and your typing will
not be undetstood in the usual way. ‘This is because you are inside a subsysten, such as INFO (Sce
section 6.1 [Subsystems), page 25.), or in a recursive editing level, such as Edit Options (Sce section 6.2
[Recursive Editing]. page 26.). 'The mode line tells you what command you are inside.

D pp—

If you are accustomed to other display editors, you may be surprised that EMACS doces not always display
the page number and line number of point in the mode line, This is because the. text is stored in a way which
makes it difficult to compute this information, I)isblznying them all the time would be too slow to be borne,
When you want to know the page and line number of point, you must ask for the information with the M-X

What Page command. Sce scetion 18 [Pages). page 79. However, once you are adjusted to EMACS, you will

ik iy

rarcly have any reason to be concerned with page numbers or line numbers,

LA A B L

Wy

s A AL ol £ bl PN

AP ORI BB s

" Rl

T IR
ok

oA § 01 100

MACS Manual for I'I'S Users

K

R S G RAR N s 5w

PR R e R P T

L

Character Sets and Command Input Conventions

2. Character Sets and Command Input Conventions

In this chapter we introduce the terminology and concepts used to talk about EMACS commands. In
particular, EMACS is designed for a kind of keyboard with two special shift keys which can type 512 different
characters. instead of the 128 which ordinary ASCH keyboards can send.

2.1. The 9-bit Command Character Set

1EMACS is designed ideatly to be used with terminals whose keyboards have a pair of shilt keys, labelled
“"Control” and "Meta”, cither or both of which can be combined with any character that yeu can type. These
shift keys produce "Control” characters and "Mcta" characters, which e the editing commands of EMACS.
Ovdinary characters like "A" which are neither Control nor Meta arc used for inserting text. We name cich
of these characters by prefising “Control=" or "Meta-" (abbreviated "C-" and "M-") to the character: thus,
Meta-l° or M-17is the chaacter which is I typed with the Meta key held down. Control in the EMACS
command character set is not precisely the same as Control in the ASCH character set. but the general

purposc is the same.

The 128 characters, multiplied by the four possibilitics of die Control and Meta keys, make 512 characters
in the EMACS command character set. So it is called the S12-character set io distinguish it from ASCIH,
which has only 128 characters. [t is also called the "9-bit” character set because 9 bits are required to express
a number from 0 to 511, Note that the 512-character set is used only for keyboard comimands. Characters in
files being edited with EMACS are ASCII characters.

Sadly, most terminals do not have ideal EMACS keyboards. In fact, the only ideal keyboards are at MIT.
On nonideal keyboards, the Control key is somewhat fimited (it can be combined with only some other
characters, not with all), and the Meta key may not exist at all, We make it possible to use EMACS on a
nonideal terminal by providing two-character circumlocutions, made up of characters that you can type, for
the characters that you can’t type. ‘These circumnlocutions start with a “bit prefix character”; sec below. Also

see the appendix for more detailed information on what to do on your type of terminal,

It may scem an unfortunate coincidence that both the EMACS 9-bit character set and the ASCH character
set use the term "Control* lor not exactly the same thing. ‘This came about because the 9-bit character set was
imented by generalizing ASCH. tn ASCH, only letters and a few punctuation’ marks can be made into
Control characters; we wanted to have a Control version of every character. FFor exainple, we have
Control-Space, Control-digits, and Control-=. We also have Control-A and Control-a which are two
dificrent characters; however, all such pairs have the same meaning as EMACS commands, so you can forget

about this quirk of the character st unless you begin customizing. In practice, you can forget all about the

iy §

T e ki sl g

-

AR

Pna

G B B e L S

10 BEMACS Manual for 1'1'S Users

distinction between ASCH Control and EMACS Control, except to realize that EMACS uses some "Control”

characters which are not on your keyboard.

In addition to the 9-bit command character set, there is one extra character called Help. 1t cannot be
combined with Control or Meta. lts use is to ask for documentation, at any time. Like the the 9-bit
characters, the Help character has its own key on an ideal keyboard, but must be represented by something
clse on other keyboards. The circumlocution we use is Control-_ H (two characters). ‘The code usec
internally for Help is 4110 (octal).

We have given some command characters special names which we always capitalize. "Return” or “<cr>"”
stands for the carriage return character, code 015 (all character codes are in octal). Note that C-R means the
character Control-R, never Return, "Rubout” is the character with code 177, labeled "Deiete” on some
keyboards. “Alimode™ is the character with code 033, somctimies labeled “Escape”. Other command
characters with special names wie Tab (code 011), Backspace (code 010). Linefeed (code 012), Space (code
0403, Exct ("1". code 041), Comma (code 054), and Period (code 056). Control is represented in the nuimeric
code for a character by 200, and Mcta by 400; thus, Mcta-Period is code 456 in the 9-bit character set.

2.2. Prefix Characters

A non-ideal keyboard can only send certain Control characters, and may completely lack the ability to
send Meta characters. “To use these commands on such keyboards, you nced to use two-character
circumlocutions starting with a "bit prefix” character which turns on the Control or Meta bit i the second
chatacier. The Altmode character turns on the Meta bit, so Altmode X can be used to type a Meta-X, and
Alunode Control-O can be used to type a C-M-0. Altmode is known as "the Mctizer”. Other bit prefix
characters are C-~ for Control, and C-C for Control and Meta together. Thus, C-~ < is a way of typing a
Control-<, and C-C < can be used to type C-M-<. Because C-~ is awkward to type on most keyboards, we

have tricd to minimize the number of conunands for which you will need it.

‘There is another prefix character, Control-X which is used as the beginning of a large set of two-characicr
commands known as "C-X commands”. C-X is not a bit prefix character, C-X A is not a circumiocution for

any single character, and it must be typed as twe characters on any terminal.

2.3. Commands, Functions, and Variables

Mast of the EMACS commands documented herein are members of this 9-bit character set. Others are
pairs of characters from that sel. However, EMACS doesn’t really define commands directly. Instead,
EMACS delines "functions”, which have long names such as "R Down Real Line™, and then the functions

are connceted to "commands” such as C-N through a dispatch table. When we say that C-1v moves the cursor

1 R

Character Sets and Command Input Conventions

down a linc we are glossing over a distinction which is unimportant for ordinary use. but essential for

customization: it is the function R Down Real Line which knows how to move down a line. and C-N moves
down g linc because it is connected to that function. We usually ignore this subtlety to keep things simple. ‘o
give the extension-writer the information he needs, we state the name of the function which really does the

work in pareatheses after mentioning the command name. For example: "C-N (*R Down Real Linc) moves

the cursor down a tine”. In the EMACS wall ehart, the function names arc used as a form of very brief

documentation for the command characters. Sce section 5.2 [FFunctions], page 21.

AL A i & s

The "~R " which appears at the front of the functicn name is simply part of the name. By convention, a
ceHain class of funetions have names which start with "~R "

While we are on the subject of customization information which you should not be fiightened of, it's a

good tme 1o tel! you about variables. Often the description of a command will say "to change this, set the

vaniable Mumble Foo". A varfable is a name used to remember a value. EMACS contains many variables

wivich are theie se that you can change thent if you want to customize. ‘The variables value is examined by

b mmnanmid ¢

some eommand, and changing the vatue makes the command behave differently. Until you are interested in
ctistomizing, you can ignore this information. When you are ready to be interested, read the basic
inforartion on variables, and then the information on individuat variables will make sense. See section 22.3
[Variables), page 114,

2.4. Notational Conventions for ASCH Chatacters

Control characiers iz files, your EMACS bufie:, or TECO programs, arc ordinary ASCH characters and
are represented as upacraw or caret followed by the corresponding non-control charsacter: control-E is

represented as th. Hhe special 9-bit characier set applies only to typing EMACS conumands.

CRL¥ is the teaditionsi werm for a carriage reters fellowed by a linefeed. This sequence of two characters
s what sepaies fio: . in text being cdited. Normally, EMACS commands make this sequence appear to be a
single character, but 1'ECG code must deal with the realities. A return or a linefeed which is not part of a

CREY s called "stray”. EMACS usualiy treats them as part of the line and displays them as tM and).

Other AZCH characters with special names include tab (control-1, 611), backspace {controi-H, 010),

fineiced (cont-oi 3 012), alunod (033), space (HOY, and rabout (177). Tab and control-1 are different as 9-bit

L LB

connmand casan ters, bt when tedized o ASCH they become the same. OQur comvention is that names off

ASCH chaacters aie inlower Gise, white names o9 bit commiz .l characters are in upper case.

Most control characte.s when present in the EMACS buffer are displayed with a caret; thus, ~A for ASCH

tA. Rubout is display>d as ~?, i:ccuuse by stretching the meaning of "control” it can be interpreted as ASCH

I T R T [N LA RIIELIAL

EMACS Manual for IS Users

control-2. A bLackspace is usually displayed as ~H since it is ASCH control-H, because most displays cannot

do overprinting.

Altmode is the ASCII code 033 sometimes labeled “Escape™ or "Alt". Altmode is often represented by
itself in this document (remember, it is an ASCHI character and can therefore appear in files). It looks like

this: 4. On some terminals, alimocde looks just like the dollar sign character. I that’s so on yours. you should

assume that anything you see in the on-line documentation which looks like a dollar sign is really an altmode

unless you are specifically told it’s a dollar sign. The dollar sign character is not paiticularly important in

EMACS and we will rarcly have reason to mention it

Basic Editing Commands

P SRR A

3. Basic Editing Commands

w e

bt s o8 e 0o I

We now give the basics of how to enter text, make corrections, and save the text in a file. If this material is

new to vou, you might learn it more casily by running the TEACHEMACS program.

3.1, Inserting Text

1 N

To insent printing characters into the text you are editing, just type them, Normally (when EMACS is at

1op level). they are inserted into the text at the cursor, which moves forward. Any characters after the cursor
move forward teo. [F the cursor is in between a 1FOO and a BAR, typing XX produces and displays
FOOXNBAR with the cursor before the "B*. 'This method of insertion works for printing characteis and
space, but other characters act as editing commands and do not insert themselves., f you need to insert a

control character, Altmode. Vab or Rubout, you must quote it by typing the C-Q command first. "C" refers
to the Contiol bit. Sce section 2 [Characteis], page 9.

To carrect text you have just inserted, you can use Rubout. Rubout deletes the character before the cursor

. s I b il A
vt 0t g i b sk L Al

(not the one that the cuisor is on top of or under; that is the chaiacter afier the cursor). The cursor and all

characteys alter it move backwards. You can rub out a line boundary by typing Rubout when the curso, is at
the beginning of a line.

)

I p [i i
KIS AN

‘To end a line and start typing a new one, type Return (“R CRLE). You can also type Retnn to break an
existing line into two. A Rubout after a Return will undo it. Return really inserts two characters, a carriage

return and a lincleed (i CRLE). but almost everything in EMACS makes them look like just one character,
which you can think of as a ling-separator character.

P e e o

If you add too many characters to one line, without breaking it with a Return, the line will grow to occupy
two (or more) lines on the screen, with a “1*

at the extreme right margin of all but the Tast of them. "The 1"
: says that the following screen line is not really a distinct fine in the file, but just the "continuation” of a line
: 100 long to fit the screen.

3.2. Moving The Cursor

To do mere than iesert chamcters, you have o know how to move the cursor, Here are a few of the

comnends for doing that.

C-A Muoves to the heginning ol the fine,
-k Moves to the end of the line,
C-¥ Muoves forward over one character. :

?
1 e S——s e SRS

14

EMACS Masual for I'FS Users

C-B Moves backward over one character.

C-N Moves down one line, verticaily. If you start in the middle of onc linc, you end in the
middle of the next. From the last line of text, it creates a new fine.

C-p Moves up one line, vertically.

C-l Clears the screen and reprinits everything, C-U C-1. reprints just the line that the cursor is
on.

c-T Transposes t aracters (the ones before and after the cursor),

M~ Movestothc of your text.

M-> Mores to the cr.a of your text.

3.3. Erasing Text

Rubout Delete the character before the cursor.
C-D Delete the character after the cursor.
C-K Kill to the end of the line.
You already know about the Rubout command which deletes the character before the cursor. Another
commmand, Control-1), deletes the character after the cursor, causing the rest of the text on the line to shift lefi.

I Contiol-1) is typed at the end of i line, that line and the next fine are joined together.

To erase a targer amount of text, usc the Control-K command, which kills a line at a time. If Control-K is
done at the beginning or middle of a line, it kills all the text up to the end of the line. If Control-K is done at

the end of a line, it joins that line and the next line.

Sce section 9.1 [Kilting], page 35. for more flexible ways of killing text.

34. Files

‘The comnunds above are sufficient for creating text in the BMACS buffer. “The more advanced FMACS
commands just make things casier. But to keep any text permanently you must put it in a file. You do that
by choosing a filename, such as 1FO0, and typing C-X C-V FOOKcr>. ‘This "visiis” the file FOQ (actually,
FOO > on your workiug dircctory) so that its contents appear on the screen for editing. You can make
changes, and then “save” the file by typing C-X C-S. 'This makes the changes permanent and actually
changes the file I'D0. Until then, the changes are only inside yous BEMACS, and the file FOO is nat really
changed. 11 the file FOO doesn’t exist, and you want to create it visit it as if it did exist. When you save your
text with C-X C-8 the file will be created.

Of corrse, there is a lot more to learn about using files. Sce section 13 [Files), page S5.

i

o

a1 oh

=

E
=z

=
=
|
=
=

M &

T —

u i N
: R AR
TR, TS MR AN B AR €€, 11K 3 ¢ 40 T AN 10 5y 10

Basic Iditing Commands

3.5. Help

If you forget what a command docs, you can find out with the Help character. ‘The IHelp character is
‘Top-H if you have a Top key, or Control-_ H (two chaiacters!) otherwise. ‘T'ype Help followed by C and the

command you want to know about. Help can help you in other ways as well. Sce scction 7 fHelp]. page 29.

3.6. Using Blank Lines Can Make Editing Faster

Cc-0 Insert onc or mure blank lines after the cursor.
C-XCO Delete all but one of many consecutive blank lines.
One thing you should know is that it is much more efficient to insert text at the end of a line than in the
middle. So if you want to stick a new line before an existing one, it is better 0 make a blank line there first
and then type the text into it, 1ather than inserting the new text at the beginning of the existing line and then

insert a line separator. ¢ is also clearer what is going on while you are in the middle.

To make a blank line, you can type Return and then C-B. But there is a single character for this: C-O
{Customizers: this is the built-in function “R Open Ling). So. instead of typing FOO Return to insert a line
containing 1FQ0, type C-0 FOO. [f you want to insert many lines, you should type many C-O's at the
beginning (or you can give C-O an argument to tell it 1w many blank lines to make. Sce scction 4
[Arguments], page 17, for how). As you then insert lines of text, you will notice that Return behaves
strangely: it "uses up™ the blank lines instead of pushing them down. If you don’t use up adl the blank lines,
you can type C-X C-O (the function ~R Delete Blank Lines) to get rid of all but one. C-X C-0 on a blank
line amaong many blank lines reduces them to one, C-X C-O on a nonbiank line deletes any blank lines which

follow.

W S A QO

TN TR

ALyl

ACS Manual for 1S Users

i
:

16

K
IR, v
ol iy P g ‘ e w e wu e L S p——

e

A

sy T SR

Giving Numeric Arguments to EMACS Commands

4. Giving Numeric Arguments to EMACS Commands

Any EMACS command can be given a numeric argument. Some commands interpret the argument as a
repetition count. For xa aple, Living an argument of ten to the C-FF command (move forward one character)

moves forward ten characsers. With these commands, no argument is equivalent to an argument of one.

Some commands care only about whether there is an argument, and not about its valuc; for example, the

conunard M-Q ("R Fill Paragraph) with no arguments fills text, but with an argument justifics the text as
well,

Stane commands use the value of the argument, but do something peculiar when there is no argument.
For examiple, the C-K (*R Kill Line) command with an argument <n> kills <nd lines and the line separators
that fullow them. But C-K with no argument is special; i Kills the text up to the next line separator, or, if
puint is right at the end of the line, it kills the line separator itself. Thus, two C-K commands with no

arguments can kill a nonblank line, just like C-K with an argument of one.

The fundamental way of specifying an argument is 1o use the C-U (*R Universal Argument) conunand
followed by the optional minus sign and the digits. C-U followed by a non-digit other than 4 minus sign has
the special meaning of "multiply by four”. It multiplies the argument for the next command by four. Two
such C-U's multiply it by sixteen. Thus, C-U C-U C-F moves firward sixteen characters, 1tis a good way to
move forward "fust™, since it moves about 1/4 of a fine on most tepminals. Other useful combinations are
C-U C-N, C-U C-U C-N (move down a good fraction of a screen), C-U C-U C-O (make "a lot” of blank
lines), and C-U C-K (kidl four lines). With conunands ke M-Q that care whether there is an argument but

not what the value is, C-U is a good way of' saying "I want an argument”,

A few commands treat a plain C-U differently from an ordinary argumtent. A few others may treat an
argument of just a minus sign differently from an argument of -1, These unusual cases will be described

when they come up; they are always for reasons of convenicence of use.

There arc other, terminal-dependent ways of specifying arguments. They have the same effect but may be
casicr o type. Sce the appendix. I your ierminal has a numeric keypad which sends something recognizably
different from the ordinary digits, it is possible to program EMACS (o allow use of the numeric keypad for
specifymg arguments. The libraries VES2 and V0 provide such a feature for those twao types of terminals,

See scetion 22.2 [Libraries], page 112,

A AN W

U

b bl L1

EMACS Manual for 11 S Users

4.1. Autoarg Mode

Users of ASCII keyboards may prefer to use Autoarg mode, in w

hich an
Most commands merely by typing the digits. Digits preceding an ordinary in

g an Alumode or Control character serve
2. set the variable Autoarg Mode nonzero,

argument can be specified for
serting character are themselves
asan argument to it and are not inserted.

inserted. but digits precedin

To turn on this mod

Autoingument digits ccho

at the bottoni of the screen: the fi
them as an argumen, ‘To insert some digits

rub it out. C-G cancels the

st nondigit ca

uscs them to be inserted or uses
othing clse, vou must follow them with
digits. while Rubout inserts them all

and n

a Space and then

and then rubs out the fast.

B S o P R T L

IR R AL v T PR Sl U i

T 18 AN ORI, 5 IR A e

v

[L

Latended (Meta-X) Commands and FFunctions

5. Extended (Meta-X) Commands and Functions

M-X Begin an eatended command. Follow by conmmand name and arguments.
C-M-X Begin an extended command. Follow by the cc .nmand name only: the command will

ask for any arguments,
C-X Alunode

Re-execute recent extended command.

While the most often useful EMACS commands are accessible via one or two characters, the less often
used commands go by long names to make them casier to remember. “They are known as “cxtended
commands” becausce they exiend the set of two-character commands. They arc also called “M-X commands®,
because they all stint with the churacter Meta-X (*R Eatended Comnmund). The M-X is followed by the
comnund’s name. actually the name of a function to be called. Terminate the name of the function with a
Return (unless you are supplying string arguments; sce below). For example. Meta-X Auto Fill Modeler>

imokes the function Auto Fill Maode. This function when executed wirns Aute il made on or off,

We say that M-X Fooer?> calls "the function FOO". When documienting the individual extended

commumnds, we will call themy "functions” to avoid confusion between them and the one oy two character i

“commands™. We will also use "M-X" as a title like "M for funcdons, as in "use M-X Foo”. The

“extended commumd™ is whit you npe, starting with M-X, and what the command does is call a function.

o AT DD i

The name that goes in the command is the name of the commiand and is also the name of tie function. and =~

bath terms will be used.

5.1. Issuing Extended Commands

5.1.1. Typing The Command Name

When you type M-X, the cursor moves down to the eche area at tiie bottom of the screen. "M-X" is

printed there, and when you type the command name it echaes there. This is known as "reading a line in the

echo area”. You can use Rubout to cancel ane character of the command name, or C-U or C-1) 1o cancel the

8 e B

entire command name. A C-G cancels the whole M-X, and so does a Rubout when the comnumd nne is

cmpty. These editing characters apply to anything which reads line in the echo arca.

The string "M-X" which appcars in the echo arca is catled a “prompt”. "The prompt always tells you what
sort of argument is required and whist it §s going (o be used for; "M-X" mcans that you are inside of the M-X

command agd should type the name of a function to be called.

20 EMACS Manual for H'S Users

5.1.2. Completion

You can abbreviate the name of the command, as long as the abbreviation is unambiguous. You can also
use completion on the function name. This means that you type part of the command name, and EMACS

visibly fills in tne rest, or as much as car be determincd from the part you have typed.

You request completion by typing an Altmode. For cxample. if you type M-X Au Altmode, the "Au”
expands to "Auto ™ because all command names which start with "Au” ceatinuce with "to ™. If you ask for
completion when there are several alteraatives for the next character. the bell rings and nothing clsc happens.
Altmode is also the way to terminate the command name and bezgin the string arguments, but it only docs this
if’ the commmand name completes in full. In that casc. an Alunode (#) appears after the command name in the
ccho area. (If the comimnand name docs not compleze in full, it is ambiguous. so it would be uscless to type the

argaments yet).

Space is another way to request completion. but it completes only one word. Successive Spaces complete
one word cach, until cither there are multiple sossibilitics or the end of the name is reached. If the first word
of acommand is Edit, List. Kill, View or Whay, it is suflicient to type just the first letter and complete it with a
Space. (This does not follow from the usual definition of comgletion, since the single letter is ambiguous; it is

asnecial feature added because these wards are so common).

Typing "?" it the middie of the command name prints a list of all the comimand names which begin with

what vou lave tped so far. You can then go on typing the name.

= 5.1.3. Numeric Arguments and String Arguments

Some functions can use muneric prefix argumeats. Simply give the Mcta-X commmand an argument and
MetrX will pass it along to the function which it calls. “The argumceat appears before the "M-X" in the

prompt, as in "69 M-X", to remind you that the function you call will reccive a numeric argument.

Sume functions require “'string arguinents” or "suffix argiments”. For those functions, the function name
is ierminated with a singic Alunode, after which come the arguments, separated by Altmodes. Afier the last
argument, type a Return to cause the furciion to be exceuted. FFor example, the functicn Describe prints the

full documientation f.a function (or a variable) whose name must be given as a string argument. An example

s D I o T i

of using it is Mcta-X DescribeApropos<erd, which prints the full description of the funciion named

!

Apropos.

" e

[

An altemnate way of calling extended commanads is with the command C-M-X (R Instant Extended
Command). 1t differs from plain M-X in that the function itself reads any string arguments. “This can be

useful if the string argument is a filename or a command name, becausc the function knows that and gives the

’ngﬂ PR TR 1t g 1

Extended (Meta-X) Commands and Functions ‘ 24

argument special treaiment such as completion. However, there are compensating disadvantages. For one
thing, since the function has already been invoked, you can’t rub out from the arguments into the function
name. For another, it is not possible to save the whole thing, function name and arguments, for you to recall
with C-X Altmode (see below). So C-M-X saves noihing for C-X Altmode. ‘The prompt for C-M-X is
"C-M-X". You can merride it with the variable Instant Command Prompt.

5.1.4. Repeating an Extended Command

The last few extended commands you have exccuted are saved and you can repeat them. We say that the

extended command is saved, rather than that the function is saved, because the whole command, including
arguments, is saved.

To re-exccute a saved command, use the command C-X Alimode (*R Re-exccute Minibulter). 1t retypes
the Tast extended command and ask for confirmation. With an argument, it repeats an carlier extended
command; 2 mcans repeat the next to the fast command, cte. You can also use the minibuffer to edit a

previous extended command and re-execute it with changes (See section 23 [Minibuffer], page 127.).

Note: Extended commands and functions were once called "MM commands”, but this term is obsolete. 1f
you see it in any user documentation, please report it. Ordinary one or two character commands used to be

known as "~R" commands, and the term may still be used in the online documentation of some functions;
please report this also,

5.2. Arcane Information about M-X Commands

You can skip this scction if you arc not interested in customization, unless you want to know what is going
on behind the scenes,

52.1. MM

Extended commands weie once called "MM commands, because "MM™ is a 'TIECO expression which
looks up a command name to find the associated program, and runs that program. Thus, the THCO
cxpression

MM AproposéWordd
means (o 1un the Apropos command with the argument "word". You could type this expression into a
minibuffer and get the same results as you would get from Meta-X Aproposé Word<cer>, In fact, for the first

year or so, EMACS had no Mcta-X command, and that’s what people did. Sce section 23 [MinibutYer],
page 127, for information on the minibuffer.

Lus Lk

1

oy Sl i AR

o abiaddin s Db a3

i b A5

ot e o I i

2

(RGN PERY

MLt
ol bk

)

sk

S

22 EMACS Manual for 1S Users

"M actually tells TECO to call the subroutine in g-register "M". ‘The first "M" means “call”, and the
sccond "M" says what to call. "This subroutine takes a string argument which is the name of a function and
locks it up. Calling a function is built into "TECO, but looking up the name is not; it is implemented by the
program TECO calls *M". "That's why "MM" is called that and not "Run” or "IF+Q".

5.2.2. Argmments in TECO Code

Functions can use one or two "prefix arguments” or "numeric arguments”. These are numbers (actually,
T'ECO expressions) which go before the "MM". Meta-X can only give the MM com:uand one argument. If
you want (o give it two, you must type it in using the minibuffer. When TECQO code 1asses prefix argusments,
they don't have (o be numbers; they can also be strings, TECO buffer objects, ete. However, no more abowut

that here.

When | ECO cade passes & string argument, it appears terminated by an Altmaode after the Altimode which
cinds the function name., Theie can be any number of string arguments. In fact, the function can decide at

run time how many string arguments to read. This makes it impossible to compile TECO code!

A5.2.3. Commands and Functions

Actually, every command in FMACS sitnply runs a function. For cx .mple, when you type the command
C-N, it runs the function "R Down Real Line”. You could just as well do C-U 1 M-X ~R Down Real
Line<cr? and get the same effect. C-N can be thought of as a sort of abbreviation. We say that the command
C-N has been "conuected™ to the function “R Down Real Line, ‘The name iy looked up vnce when ihe
command and function are connected, so that it does not have to be looked up again cach time the command
is used. For histerical scasons, the default argument passed to a function wiich is connected to a command
you typed is 1, but the default for MM and for M-X is 0. "T'his is why the C-U 1 was nccessary in the example
above. The documentation for individual EMACS commands usually gives the name of the function which

really implements the command in parentheses afier the command itself.

Just as any funciion can be called directly with M-X, so almost any function can be connceted to a
comaund, This is the basis of customization of EMACS. You can use the function Set Key to do this. ‘To
define C-N, you could type M-X Set Key4~R Down Real Linederd, and then type C-N. 1f you use the
function View File often, you could connect it to the contmand C-X V (not normally defined). You could
even connect it to the command C-M-V,eplacing that command’s nonmal definition, ‘This can be done with

the tlunction Set Key; or you can use an init file to do it permanently. Sce scetion 22.7 [Init], page 120.

) wmon gt ¢

g o

%;
f
%

[FpRipap .

Iixtended (Meta-X) Conunands and Functions

5.24. Subroutines and Built-in Functions

EMACS is composed of a large number of functions, cach with a name. Some of these functions are
conneeted to commands; some are there for you to cail with M-X; some are called by other functions. ‘The
last group are called subroutines. They usually have names starting with "&", as in "& Read Line", the
subroutine which reads a line in the echo arca. Although most subroutines have such names, any function
can be called as a subroutine. FFunctions like ~R Down Real Line have names starting with ~R because you
are not expected to call them directly, cither. “The purpose of the "&™ or "~R" is to get those function names
out of the way of command completion in M-X. M-X allows the command name to be abbreviated if the
abbreviation is unique, and the commands that you arc not interested in might have names that would
interfere and make some uscful abbreviation cease to be unique. The funny characters at the front of the
name prevent this from happening,

Some function names, present as definitions of single-character cotmmands, are known to all the Help
features but don't seem to exist if you try to cail them by name. The names of these functions are not always
defined; they are contained in a Hbrary called BARE which is loaded temporarily by cach documentation
command and then flushed again. "The reason for this is that these functions are really built into 'TECO and
not pirt of EMACS: the EMACS "delinitions™ aren’t necessay for actually using them, and are only there
for the sake of docunentation. I you load BARE permanently, then you can refer to these functions by

name like all others. Sce section 22.2 {Librarics], page 112.

LY

RS E—
R 3

e ‘
e)
F A F O R JUUNERTT

1

P R T T L T L L O A N K A RN (PR e S S

" XN CENTIETERR RN
T } B N T L I BT SR VRS P T

H

. G

MACS Manual for I'1'S Users

I
y

24

e ewer e WY

T“n;':q FaseoEs, P
TR SN

Meosing Up And Down Levels 25

6. Moving Up Aud Down Levels

Subsystems and recursive editing ievels are two states in which you arc tempuorarily doing something other

than editing the visited file as usnal. For example. you might be editing a message that you wish to send, or
looking at a documentation file with INFO.

L o 6 0 L it

o0.1. Subsystems

\ seehsysten is an EMACS function which is an interactive program in its own right: it reads comnumds in
a kanguage of its own, and displays the tesults. You enter a subsystem by tyning an EMACS command which
imokes i Once entered, the subsystem runs until a specilic conmand to exit the subsystem is typed. An
example of an EMACS subsystem is INFO, the documentation reading program. Others are Backtrace and

THEBUG, usod o debugging TECO programs, and RMAH . and BABYL, used for 1cading and cditing mail
filcs.

A i oy sl i s i

'

ko s s

The commands understosd by a subsystem are usually not like EMACS commands, because their purpose

is something other than editing text, For example, INFO commands arce designed for moving around in a

tice-structured documentation file. In EMACS. most commands arc Control or Mcta characters because

printing characters inseit themselves. In most subsystems, there is no insertion of text, so non-Control
non-Meta characters can be the commands.

2 10 it 550 o 1

While you are inside a subsystemn, the maode line usually gives the name of the subsystem (as well as other

information supplicd by the subsystem, such as the filename and node namie in INFO). You can tell that you

T ot et gy g e g

bt st L thh

are inside a subsystem because the mode line does not start with “EMACS”, or with an open bracket ("[™)

which would indicate a recursive editing level. See section 1.1 [Mode Line], page 6.

Because cach subsystem implements its own commands, we cannot guarantee anything about therit,
Howcever, there are conventions for what certain conunands ought to dos:

(KX

C abuits (exits without finishing up)
Backspice Scrolls backward, like M-V in EMACS.
Space Scrolls forward, like C-V in EMACS.

Q Lxits normaily.

X

Begins an extended command. like M-X in EMACS.

Helpor? Prints documentation on the subsystem’s commands.

Not all of these necesearily exist in every subsystem, however,

q

il ‘v|\‘\’ﬂ|;

e

i

]

i

o AR

= S STV V.
= - —— T A T g e T e A

26 EMACS Manual for IS Users

6.2. Recursive Editing Levels

A recursive editing Ievel is a state in which you are inside a command which has given you soine text for

you to edit. The text may or may not be part of the file you are editing. Recursive cditing levels are indicated
in the mode line by square brackets ("[" and "}").

For example. the command M-X Edit Options is for changing the settings of EMACS opticens by cditing a
list of option names and values, You use the same commands as always for making changes in this list; when
you are finished. the changes take affect in your option settings. While you are editing the list of options, the
maode line says "[Edit Options]”. Sce section 22.3 {Variables], page 114,

A recursive editing level differs from a subsystem in that the commands are ordinary EMACS commands

(though a handful may have been changed slightly), whercas a subsystem defines its own command language.

The text you edit inside a recursive editing level depends on the command which invoked the recursive

cditing level. {t could be a list of options and valucs, or a list of tab stop scttings, syntax table settings, a
message 1o he sent, or any text that you might wish to compose.

Sometimes in a 1ccursive editing level you edit text of the file you are visiting, just as at top level. Why
wald this be? Usually tecause i few commands are temporarily changed. For example, Ldit Picture in the
PICTURE library defines commands good for editing a picture made out ¢” characters, then cnters a
recusive editing level. When you exit, the special picturc-cditing commands yo away. Until then, the

brackets in the mode line serve to remind you that, although the text you are editing is your file, all is not
noral. See section 26 [PICTURE], page 151

In any case, if the mode line sz;ys “[..}" you are inside a recursive editing level, and the way to exit (send
the message, redefine the options, get rid of the picture-editing commands, cte)) is with the command
Control-Altmode or C-M-C (*R Exit). See scction 0.3 [Ixiting], page 26. If you change your mind about the
command (you don’t want to send the message, or change your options, otc.) then you should use the
command C-](Abort Recursive idit) to get out. Sce scction 24.1 [Aborting), page 129.

When the text in the mode line is surrounded by parentheses, it means that you are inside a "Minibulfer”.
A winibufter is a special case of the recursive editing level. Like any other, it can be aborted safely with C-.
For tull details on minibuflers, See seetion 23 [Minibufter), page 127.

6.3. Exiting Levels; Exiting EMACS

C-XC-C Exit from EMACS to the superior job.
C-M-C Exit from EMACS or from a recursive editing level.

J T ———rT

VO M i RGO 0 b3 e

1 PR Sl 0t L

ub bk W o

WAL bl ot w9 b ot 88 ootk b ol it e

A 0 b i

Maving Up And Down |.evels

p

The general EMACS command to exit is C-M-C (*R Exit). This command is used 10 exit from a recursive
editing level back to the top level of EMACS, and to exit from EMACS at top level back to HACTRN. If

your keyboard docs not have a Meta key, you must type this connand by means of a bit prefix character, as

C-C C-C or as Altmode C-C. Note carcfully the difference between exiting « recursive editing level and

. TV Y RTINS §

. dborting it: exiting allows the command which invoked the recursive editing level to finish its job with the text
as you have cdited it, whercas aborting cancels whatever the command was going to do. Sce section 24.1
[Aborting], page 129.

We cannot say in general how to exit a subsystem, since cach subsystem defines its own commangd

Prr—

language. but the convention is to use the character "Q".

You wan eat from EMACS back to the superior job, usually HACTRN, at any time, cven within a

AN N e

recursive editing level, with the command C-X C-C (“R Retwrn to Supetior). If this is used while you are
inside « tecursne cdiiing level, then when EMACS is re-enteted you will still be inside the recursive editing

level.

Exiting EMACS doces not normally save the visited file, because it is not the case that users exit EMACS
only when they are "finished editing”. 1 you want the file saved, you must use C-X C-S. Exiting does cause

an auto save ifauto save mode s in use.

Lxiting from EMACS runs the function & Exit EMACS, which executes the value of the variable Exit
Hook, if it is defined.

[

LB N

b ¢ b 1 ol bl T T e

SRR e e

g o S
ik

A

EMACS Manual for I'l'S Users

}

4 N
AT L

[ORSRTEY

L

AR

i

e L L]

e

Sclf-Documentation Commands

7. Scif-Documentation Commands

EMACS provides extensive self-documentation features which revolve around a single character, called
the Help character. At any time while using EMACS, you can type the Help character to ask for help. How
o type the Help character depends on the terminal you are using. but aside from that the same character
always ducs the trick. 1f your keyboard has a key labeled Help (above the H), type that key (together with the
Top key). Otherwise the way you type the Help character is actually C- _ (Control-Underscore) followed by
an (this is two characters to type. but let’s not worry about that). Whatever it is you have to type, to
EMACS it is just the Help character. On some terminals just figuring out how to type a Control-Underscore
i> hard! "Typing Underscore and adding the Control key is what is supposced to work, but on some terminals it
docs not. Sometimes Control- Shift-Q warks. On VI-190 terminals, Control-/ and Control-? send a

Control-_ character.

It you type Help while you are using a subsystem such as INFO, it will give you a list of the commands of

that subsystem.

1f you type Help in the middle of a multi-character command, it will often tell you about what sort of thing
you should type next. Por example, if youi type M-X and then FHelp, it will telf you about M-X and how to
type the same of the command. If you finish the function name and the Altimaode and then type Help, it will
tell you about the function you have specified so you can know what arguments it needs. 1 you type C-X and

then type Help. it will tell you about the C-X commands.

But normally, when it's time for you to start typing a new commuand, Help offers you several options for
asking about what commands there are and what they do. It prompts with "Duoc (2 for help):” at the bottom
of the screen, and you should type a character to say what kind of help you want. You could type Help or ™7

at this point to find out what options are available. The ones you are most likely to need are described here.

The most basic Help options are Help C and Help . You can use them to ask what a particular
command docs. Help Cis for character commands; tyne the command you want to know about after the
Help and the "C" ("C" stands for Character), Thas, lelp C M-I or Help C Altmode I¥ tells you about the
M-I command. Help D is for asking about functions (extended commands); type the name of the function
and a Rerwn, Thas, Help 1 isp Mode<er) tells you about M-X Lisp Made. "D stands for *Describe”,

since Help D actually uses the function Describe to do the work.

A more complicated sort of question to ask is, “"what are the commands for working with files"? For this,
you can type Help A, followed by the siring “file” and a Return. It prints a list of all the functions that have
"file" anywhere in their names, including Save All Files, “R Save File, Append to File, ctc. 1f some of the

functions arc connccted to commands, it will tell you. For example, it would say that you can iaveke

30 ISMACS Manual for 'S Users

~R Save File by typing C-X C-S. "A" stands for "Apropos”, since Help A actually uses the-function Apropos
to do the substring matching. Help A does not list internal functions. only those the nonprogrammer is likcly
to use. If you want subroutines to be listed as well, you must call Apropos yoursclf.

Because Apropos looks only for functions whose names contain the string which you specify, you must use
ingenuity in choosing substrings. If you are looking for commands for killing backwards and Hclp A Kill

Backwards docsn’t reveal any, don’t give up. Try just Kill, or just Backwards, or just Back. Be persistent,
Pretend vou are playing Adventure.

If you aren’t surc what characters you accidentally typed to produce surprising results, you can use H«lp 1.

to find out ("1.” stands for "What | ossuge™). I you sce commands that you don’t know, you can use Help C

1o find out what they did.

If a command doesn’t do what you thought you knew it should do. you can ask to sec whether it has

changed recently. 1lelp N print. out the filc called EMACS;EMACS NEWS which is an archive of
announcements of changes to EMACS.

T'o find out about the other Help eptions, type Help Help. “That is, when the first Help asks for an option,
type Help to ask what is available.

Finally, you should know about the decumentation files tor EMACS, which are EMACS;iMACS
GUIDE and EMACS:EMACS CHART. EMACS CUIDL is a version of the manual formatted to be printed

out on a terminal or fine printer. EMACS CHAR'T has a brief description of all the commands, and is good
to post on the wall near your terminal.

=

E]
=
=
=
=
=3
=
=
=
=
=
B
N

i

B

bR

ke 0 Dy i A, o 0 5 G |

e b bl i e i s o s
SN Dubithad A

g

i

‘T'he Mark and the Region

Lra 1 DA AR A I"NWH?-#WMWMH

8. The Mark and the Region

In general, a command which processes an arbitrary part of the buffer must know where to start and where
to stop. In EMACS, such commands start at point and end at a place called the "mark”. This range of text is

called "the region”. Here are some commands for sctting the mark:

c@ Set the mark where point is.

C-Space ‘The same.

C-XC-X Interchange mark and point.

M-@ Set mank after end of next word.

C-M-@ Setmauk after end of next I isp s-expression.
€< Sctnnnk at beginning of buffer.

C> Setmark at end of bufler.

M-I Put region around current paragraph.
C-M-H Put segion around current Lisp defun.
C-XH Put region around cntire buffer.

C-XC-p Put region around current page.
i3 p

For cxample, if you wish to comert part of the buffer to all upper-case. you can use the C-X C-U
command. which operates on the text in the region. You can first go to the beginning of the text to be
capitalized. put the mark there, move to the end, and then type C-X C-U. Or. you can st the mark at the end
of the text. move o the heginning, and then type C-X C-U. C-X C-U runs the function *R Uppcrcasé

Region, whuose name signifies that the region, or everything between point and the mark, is to be capitalized.

The nrost common way o set the mark is with the C-@ command or the C-Space command (*R Set/Pop

Mark). They set the mark where point is. ‘Then you can mos e point away, leaving the mark behind.

Itisn’t actually possible o type C-Space on non-Meta kevboards. Yet on many terminals the command
appears to work anyway! This is because trying to type a Control-Space on those terminals actually sends the
character C-@. which mcans the same thing as C-Space. A few keyboards just sead a Space. If you have one

of them. you suffer, or customize your EMACS,

Since terminals have only once cursor, there is no way for EMACS to show you where the mark is located. :
You have to remember. The usual solution to this problem is to sct the mark and then use it soon, before you

¢ forget where itis. But you can sce where the mark is with the command C-X C-X (*R Iixchange Point and

Mark) which puts the mark where point was and point where the mark was. Thus, the previous location of
the mark is shown, but the region specified is not changed. C-X C-X is also uscful when you are satisficd with
the location of point but want to move the other end of the region: do C-X C-X to put point at that end and
then you can adjust it. The end of the region which is at point can be moved, while the end which is at the

mark stays fixed.

EMACS Manuat for I'1'S Users

If you insert or delete before the mark, the mark does not stay with the characters it was between. If the
buffer contains "1F00 BAR" and the mark is before the "B”, then if you delete the "F" the mark will be
before the “A". ‘This is an-unfortunate result of the simple way the mark is impiemented. It is best not to

delete or insert at places above the mark until you are finished using it and don’t care where it drifis to.

8.1. Commands to Mark Textual Objects

There are commands for placing the mark on the other side of a certain object such as a word or a list,
without hanving to move there first. M-@ (R Mark Word) puts the mark at the cnd of the next word, while
C-M-@ (~R Mark Scxp) puts it at the end of the next s-expression. - (“R Mark End) puts the mark at the
end of the buffer, while C-< ("R Mark Beginning) puts it at the beginning. “These characters allow you

sine a little typing. sometimes.

Other commands set buth point and mark, to delimit an object in the buffer. M-H ("R Mark Paragraph)
puts point at the beginning of the paragraph it was inside of (or before), and puts the mark at the end. M-H
does all thats necessary if you wish to indent, case-convert, or kill a whole paragraph. C-M-H (*R Mark
Defun) similarly puts point before and the mark afier the current or nest defun. C-X C-P (*R Mark Page)
puts point before the current page (or the next or previous, according te the argument), and mark at the end.
The mark goes after the terminating page delimiter (1o include it), while point goes after the preceding page
delimiter (to exclude it). Finally, C-X H (R Mark Whole Bufler) makes the region the entire buffer by

putting point at the beginning and the mark at the end.

N PRI T L IR RN L L T TSR]

&2, The Ring of Marks

\side from delimiting the region, the mark is also useful for remembering a spot that you may want to go

back to. To muke this feature more useful, EMACS remembers 16 previous locations of the mark. Most

a0k

commands that set the mark push the old mark ontc this stack. To returmn to a marked location, use

U} i

C-U C-¢* (or C-U C-Space). This moves point to where the mark was, and restores the mark from the stack

of former n-arks. So repeated use of this conmimand moves point to all of the eld marks on the stack, one by

one. Since the stack is actually a ring, cnough uses of C-U C-(bring point back o whete it was originally.

e SR U]

Insertion and dcletion can cause the saved marks to drift, but they are still good for this purpose because they

are approximately right.

Some commiands whose primury purpose is to move point a great distance take advantage of the stack of -

-
o -

maiks to give you a wa (o undo the command. The best examiple is M-<, which moves to the beginning of

the bufler. 1t sets the mark first, so that you can use C-U C-@ or C-X C-X to go back to where you were.
Scarches sometimes sct the mark; it depends on how far they move. Because of this uncertainty, scarches

‘The Mark and the Region

3

type out "~@" if they set the mark. ‘The nonnal situation is that scarches leave the mark behind if they move

at least 500 characters. but you can change that value since it is kept in the variable Auto Push Point Option.
g P |

By sctting it to 0, you can make all scarches sct the mark. By setting it to a very Targe number such as tcn

million. you can prevent all scarches from setting the mark. ‘The string to be typed out when this option docs
its thing is kept in the variable Auto Push Point Notification.

=

ka1

§ bt § ¥

Wl b e s R O o

s o 0§

shi 1t itk b it ol

s Manual fo I'1'S Users

na e
”.1"1‘\’

MY DA

vad

L

L g e L

R

i

[XTRRET]

sl

£

P

TR

@

Killing and Moving ‘l'ext

DO Bt e,
* o,

9. Killing and Moving Text

W P PR

‘The comimonest way of moving or copying text with EMACS is to kill it, and get it back again in one or
more places. 'This is very safc because the last several pieces of killed text are all remembered, and it is
: versatile, because the many commands for killing syntactic units can also be used for moving those units.

"There are also other ways ol moving text for special purposcs.

* 9.1. Deletion and Killing

Most commands which crase text from the buffer save it so that you can get it back if you change your
mind. or move or copy it to other paits of the buffer. These commands are known as "kill" commands. The
rest of ths commands that crase text do not save it; they are known as "delete” commands. ‘The delete
cotaands include C-1) and Rubout, which act on single characters, and those connnands that delete only
spaces or line separators, Commands that can destroy significant amounts of nontrivial data generally kill,
The commands’ names and individual descriptions use the words "kill” and "delete” to say which they do. IF
you do a Kill command by mistake, you can use the Undo command to undo it (See section 24.3 {Undol,

page 132.).

i c-D Delete next character.

‘ Rubout DNelete previous character,

! M-\ Delete spaces and tabs around point, ;

. C-XC-0 Delete blank lines around the current line,

M-~ Join two lines by deleting the CRILF and any indentation. !

; C-K Kill rest of line or one or moie lines.
c-w Kill region (from point to the mark). ;
M- Kitl a word. !
M-Rubout Kill a word backwards.
C-X Rubout Kill back to beginning of sentence. %
M-K Kill to end of sentence. HE
C-M-K Kill s-cxpression.

C-M-Rubout Kill s-expression backwards.

9.1.1. Deletion

"I'he most basic delete commands are C-D and Rubout. C-D deletes the character after the cursor - the one
the cursor is "on top of" or "underncath”. "The cursor doesn’t move. Rubout deletes the character before the
cursor, and moves the cuisor back. Line separators act like single characters when deleted. Actually, C-D

and Rubout aren’t always delete commands; if you give an argument, they kil instcad. This prevents you

from losing a great deal of text by typing a large argument to a C-I or Rubout.

£

E 36 I:MACS Manual for 1S Uscrs

i -
!

i Tie other delete comimands are those which delete only formatting characters: spaces, tabs and line

separatos. M-\ (*R Delete Horizontal Space) deletes all the spaces and tab charactets before and after
point. C-X C-O (*R Delete Blank Lines) deletes all blank lines after the current line, and if the carrent line
is blank deletes all blank lincs preceding the cuirent line as well (leaving one blank line, the current line).
M-~ (“R Delete Indentation) joins the current line and the previous line, or the current line and the next line
if given an argument. Sce section 11.3 [Indentation), page 46.

A function ~R Delete Region used to exist, but it was too dangerous. When you want to delete a large
amount of text without saving a copy of it (perhaps because it is very big). you can set point and mark around

the text and then type M-¢ M R K ¢ ¢. (This is a use of the minibuffer. Sce scction 23 [Minibuffer],
page 127.).

9.1.2. Killing by Lines

The simplest kill command is the C-K command (*R Kill Linc). If given at the beginning of a line, it kills

ali the text on the line, leaving it blank. 1fgiven on a blank line, the blank linc disuppears. As a consequence,

i you go to the front of a non-blank line and type two C-K's, the line disappears completely.

More gencrally, C-K kills from point up to the end of the line, unless it is al the end of a line. In that case

it kills the line separator following the line, thus merging the next line into the current one. Invisible spaces

I
e

‘
gy

i
i and tabs at the end of the line are ignored when deciding which case applics, so if point appeats to be at the
§

end of the line, you can be sure the fine separator will be killed.

C-K with an argument of zero kills ali the text before point ¢i the curreat line,

IFC-K is given a positive argument, it kills that many lines, and the separators that follow them (however,

teat on the current tine before point is spared). With a negative argument, -5 for example, all text before
point on the current line, and all of the five picceding lines, are killed.

AR LA AR Ay O 3 2 204

9.1.5. Other Kill Commands

A kill command which is very general is C-W (*R Kill Region), which kills everything between point and

the mark. With this command, you can kill any contiguous characters, if you set the mark at one end of them

and go to the other end, first.
=y
Other syatactic units can be killed: vords, with M-Rubout and M-1) (Sce section 1.1 [Words), page 43.); ~ 7

sexpressions, with C-M-Rubout zad C-M-K (Sce section 20.60.1 [S-expressions], page 94.); sentences, with
C-X Rubout and M-K (Sce sertton 112 [Sentences), page 44.).

£l
2
E
]

e AT

Killing and Moving Text

W1 e s, AT R M
A
o
s

.
|
)
4
d
3
#
{
¥
|
)

9.2. Un-Killing

Un-killing is getting back text which was killed. The usual way to move or copy text is to kill it and then
un-kill it onc or more times.

C-Y Yank (re-insert) last killed text.

M-Y Replace re-inserted killed text with the previously killed text.
M-W Save region as fast hilled text without killing.
C-M-W Append next kill to last batch of killed text.

Killed text is pushed onto a ring buffer that remembers the fast 8 blocks of text that were killed. (Why itis
called a “ring buffer” will be explained below). ‘The command C-Y (“R Un-kill) reinserts the text of the
most recent kill. 1t feaves the cutsor at the end of the text, and puts the matk at the beginning. ‘T'hus, a single
C-W undoces the C-Y (M-X Undo also doces so). C-U C-Y leaves the cursor in front of the text, and the mark
after. This is only if the argument is specified with just a C-U, preciscly. Any other sort of argument,
including C-U and digits, hus an ¢ffect described below.

Il you wish to copy a block of text, you might want to use M-W (*R Copy Region), which copics the
region into the kill ring without removing it from the buffer. This is approximately equivalent to C-W
followed by C-Y, except that M-W does not mark the buffer as "changed” and does not temporarily change
the screen. Note that there is only one il ring, and switching bufiers or files has no cffect on it Afler

visiting a new file, whatever was last killed in the previous file is still on top of the kill ring.

9.2.1. Appending Kills

Normally, cach kill command pushes a nevs block onto the kill ring. However, two or more kill commands

in a row combine their text into a single entry on the ring, so that a single C-Y command gets it ail back as it

was before it was killed. (Thus we join television in leading people to kill thoughtlessly). #f a kili command is

2 gt o R o s 1 e

* o
A e s s sl e 2 bt o

separated from the last kill command by other commands, it starts a new cntry on the kill ring, uniess you tell

it not to by saying C-M-W (*R Append Next Kill) in front of it. The C-M-W tells the following command, if

VONNeNES L ¢ we

it is a kit command, to append the text it kills to the last killed text, instcad of pushing a new entry. With

C-M-W, you can kill several separated picces of text and accumulate them to be yanked back in one place.

o,

9.2.2. Un-killing Earlier Kills

AR

iy

To recover text that was killed some time ago (that is, not the most recent victim), you need the Meta-Y
(*R Un-kill Pop) command. "The M-Y command should be used only after a C-Y command or another M-Y.
1t takes the un-killed text and replaces it with the text from an carlier kill,

= IS Ty s

38 EMACS Manual for IS Users

You can think of all the last few kills as living in a ring. Afler a C-Y command, the text at the front of the
ring is also present in the buffer. M-Y "rotates” the ring, bringing the previous string of teat to the front, and
this text replaces the other text in the buffer as well. Enough M-Y commands can rotate any part of the ring
to the front, so you can get at any killed text as long as it is recent cnou'gh to be still in the ring. Eventually the
ring rotates all the way around and the most recent killed text comes to the front (and into the buffer) again,
M-Y with & ncgative argument rotates the ring backwards. If the region doesn’t match the text at the front of
the ring, M-Y is not allowed (its definition doesn’t make sense in that case).

In any casc, when the text you are louking for is brought into the buffer, you can stop doing M-Y’s and it :
will stay there, It's really just a copy of what's at the front of the ring, so cditing it docs not change what's in

the ring. And the ring, once rotated, stays rotated, so that doing another C-Y gets another copy of what you 3
rotated to the front with M-Y. :

If you change vour mind about un-killing, a C-W or M-X Undo gets rid of the un-killed text at any point,
after any number of M-Y's. C-W pushes the text onto the ring again. M-X Undo does not.

If you know how many M-Y's it would take o find the text you want, then there is an alternative. C-Y

0 0 A T L

with an argument greater than one restores the text the specified number of entrics down on the ring. Thus,

C-U 2 C-Y is gets the next to the last block of killed text. 1 differs from C-Y M-Y in that C-U 2 C-Y docs
not permanently rotate e ring.

i s el

Al PN K 0

A way of vicwing the contents of the kill ring is

ol P g

M-X View Q-register¢. .K<cr>

Sk ¢

You must add one to the indices listed by this command, to get the argument to use with C-Y to yank any
particular string.

wivar b

o e, gl bbb o

9.3. Other Ways of Copying Text

Usually we copy or move text by killing it and un-killing it, but there arc other ways that arc useful for

copying vne block of text in many places, or for copying many scattered blocks of textinto one place.

9.3.1. Accumulating Text

You can accumulate blocks of text froni scattered locadions cither into a bufler or into a file if you like.

€
‘To append them into a buffer, use the command C-X A<buffernamed<er> (*R Append w Bulfer), which

inserts a copy of the region into the specified buffer at the location of point in that buffer. If there is no

ulfer with the name you specify, one is created, empty. If you append text into a buffer which is visiting a

é
=
=3
E
£
£
£
E
S
ES

Killing and Moving Text

file, the copicd text goes into the middle of the text of the file.

Point in that bufTer is left at the end of the copiced text, so successive uses of C-X A accumulate the text in
the specified buffer in the same order s they were copied. If C-X A is given an argument, point in the other

bufter is left before the copied text, so successive uses of C-X A add text in reverse order.,

You can retricve the accumulated text from that buffer with M-X Insert Buffer¢<buffernamed<cr>. This
inserts a copy of the text in that buffer into the selected buffer. You can also select the other buffer for
cditing. See scction 14 [Bulteis), page 67, for background information on buffers.

Strictly speaking, C-X A does not always append o the text alrcady in the buffer. But if it is used on a
. ~ . .
buffer which starts out empty, it does keep appending to the end.

Fo accumulate text into a file, use the command M-X Append to Filed<filenumed<crd. It adds the iext of
the region to the end of the specified file. M-X Prepend to File adds the text to the beginning of the file

instead. ‘The file is changed immediately on disk. If you wish to insert the text into a copy of the file in an
LEMACS buffer, you must append to that buffer instead.

9.3.2. Copying Text Many Times
When you want Lo insert a copy of the same picce of text frequently, the kill ring becomes impractical,
since the text moves down on the ting as you edit, and will be in an unpredictable place on the ring when you

need it again, For this case, you can use the commands C-X X (“R Put Q-register) and C-X G ("R Get
(Q-1egister) to move the text.

C-X X<g> stores a copy of the text of the region in a place called g-register <@>. <q> can be aletter or a
number. This gives 36 places in which you can store a picce of text. With an argument, C-X X deletes the
text as well. C-X G<q> inserts in the bufferthe text from g-register <@>. Noimally it leaves point before the

text and places the mark after, but with a numeric argument it puts point after the text and the mark before.

‘The g-registers are important temporary variables in TECO programming,” but you don’t have to

understand them, only to know that what you save with C-X X A is what you will get with C-X G A,

Do not to use g-registers M and R in this way, il you are going to use the TECO commands MM and MR,

_

il
it bbbt <

R

b
R

b

=
:
o =

wal for I'1'S Users

MA CS M:

.
I

At AN B A BN B 20 30w

© BN O he e b o

Scarching

10. Scarching

Like other editors, EMACS has commands for scarching for an occurrence of a string. Ihe semch
command is unusual in that it is "incremental™; it begins to scarch before you have finished typing the search
string. As you type in the scarch string, EMACS shows you where it would be found. When you have typed
enough characters to identify the place you want, vou can stop,

CS Scarch forward.

C-R Search backward.
C-S¢ C-W Ward scarch, ignoring whitespace.

The command to search is C-S (R Incremental Search). C-S reads in characters and positions the cursor
at the first occurrence of the characters that you have typed. If you type C-S and then IS, the cursor moves
right after the fust "F”. Type an "0, and sce the cursor move to after the first "1FO". After another “O”, the

cursor is after the first “"FOO™ after the place where you started the scarch. At the same time, the "1FOO™ has
echoed at the bottom of the screen.

IT you type a mistaken character, you can rub it out. Afier the 1FOQ, typing a rubout makes the “0”
disappear {rom the bottem of the screen, leaving only "FO”. The cursor moves back to the "1FO". Rubbing

out the "O™ and "I moves the cursor back to where you started the scarch.

When vou are satisfied with the place you have reached, you can type an Alunode, which staps scarching,
leaving the cursor where the scarch brought it. Also, any command not specially meaningful in scarches stops
the scarching and is then exccuted. Thus, typing C-A would cxit the scarch and then move to the beginning
of the line. Altmade is necessary only if the next command you want to type is a printing character, Rubout.

Altmode or another search command, since those are the characters that would not exit the scarch.

Somctimes you scarch for "FOO" and find it, but not the one you expected to find. There was a second
OO that you forgot about, before the one you were looking for. Then type another C-8 and the cursor will
find the riext FOQ. “This can be done any number oftimes. 1f you overshoot. you can rub out the C-S's. You

can also repeat the scarch after exiting it. if the first thing you type after entering another scarch (when the
argument is sull ecmpty) isa C-S.

IT your string is not found at all, the echo arca says "Failing 1-Scarch™. “The cursor is alter the place where
FMACS found as nuch of your stiing as it could. Thus, if you seich for FOOT, and there is no FOOT, you
might see the cursor alter the FOO in FOOL . At this point there are several things you can do. W your string
wirs mistyped, you can rub some of it out and coneetit. 1Fyou ike the place you have found, you can type
Altmaode or some other FMACS command to "accept what the search offered”. Or you can type C-G, which

throws away the characters that could not be found (the "I in "FOO'T™), leaving those that were found (the

1 e yam v s il

g e

i T 12

'y sl W

4 s

» ’ .
s rtati b bl 0 ka1 B

i b b b bl

lwﬁ\‘h

i

EMACS Manual for 'S Users

“1F00" in "FOO'T™). A second C-G at that point undoes the search entircly.

‘The C-G "quit” command docs special things during scarches; just what, depends on the status of the
search. If the scarch has found what you specified and is waiting for input, C-G canccls the entire search.
“I'he cursor moves back to where you started the search. If C-G is typed while the search is actually searching
for something or updating the display, or after scarch failed to find some of your input (having scarched all
the way to the end of the filc), then only the characters whi- i have not been found are discarded. Having
discarded them, the scarch is now successful and waiting for more input. so a sccond C-G will cancel the

entire scarch. Make sure you wait for the first C-G to ding the bell before typing the second one; if typed too
soon, the second C G may he confused with the first and effectively lost.

You can also type C-R at any time to start scarching backwards. 1F a scarch fails because the place you
started was too late in the file, you should do this. Repeated C-R's keep looking for iore occurrences
backwards. A C-S starts going forwards again. C-R’s can be rubbed out just like anything clse. 1f you know
that you, want to scarch backwards. you can use C-R instead of C-S to stast the scarch, because C-R is also a
compuand (*R Reverse Incremental Scarch) to seach backward., Note to all customizers: all this command

docs iy call the current definition of “R - Incremental Scarch with a negative argument.

A non-incremental scarch is also available. ‘Type Altmode right after the C-S to get it. Do M-X
Describe¢~R String Scarch<cr> for details. Some people who prefer non-incremental scarches put that
function on Meta-S, and “R Character Scarch (do M-X Describe¢ for details) on C-S. It can do one uscful
thing which incremental scarch cannot: scarch for words regardless of where the line breaks.

Word scarch searches for a sequence of words without regard to how the words are separated. More
precisely, you type a string of many words, using single spaces to separate them. and the string can be found
cven if there are multiple spaces or line separators botween the words. Other punctuation such as commas or
periods must match exactly. ‘This is uselul in conjunction with documents formatted by text justifiers. If you

cdit while looking at the printed, formatted version, you can’t tell where the line breaks are in the source file.
With word scarch. you can scarch without having to know.

Word scarch is a special case of non-incremental scarch and is invoked with C-S Altmode C-W. 'This is

followed by the scarch string, which must always be terminated with an Altmode. Scarching doces not start
until the final Altmode is typed.

i

"

S,

i

| !?w

=

N s v o

it

o R I A

RETIRIT

~

Fa

e e

e e el Ty

Commands for 1inglish "Fext

11. Commands for English Text

EMACS cnables you o manipulate words, sentences, or paragraphs of his text. In addition, there are

commands to fill text, and comert case. For text-justificr input files, there are commands that may help
nrnipulate font change commands and underlining,

Iiditing files of text in a human language ought to be done using Text mode rather than Fundamental
mode. Imvoke M-X Text Maode 1o enter Text mode. Sce section 20 {Major Model]. page 87. M-X ‘Text Mode
causes Tab to run the function ~R "Tab to Tab Stop, which altows you to set any tab stops with M-X Edit Tab
Stups (See section 11.3 [Indentaion], page 40.). Features concerned with comments in programs arc turned
off exeept when eaplicitly invoked. Aatomatic display of pienthesis matching is turned off, which is what

must people want, Finally, the syntax table is changed so that pesiods are not considered part of a word,
while apostrophes, hackspaces and underlines are.

H.1. Word Commeands

iPMACS has commands for moving over or operating on words. By convention, they are all Mela-

characters.
M-F Move Forward over a word.
M-B Move Backward over & word.
M-D Kill up to the end of a word.
M-Rubout Kill back to the beginning of a word.
M-@ Mark the end of the next word.
M-T

Transpose two words; drag a word forward or backward across other words

Notice how these commands form a group that parallels the character based commands C-F, C-B, C-D,

C-1and Rubout. M-@ is iclated to C-@.

The commands Meta-l® (R Forward. Word) and Mcta-B ("R Backward Word) move forward and
backward over words. They are thus analogous to Control-l- and Control-B, which move over single

characters. 1ike their Control- analogues, Meta-1¥ and Meta-13 move several words if given an argumoend, and

can be made to go in the apposite direction with a negative argument. Forward mation staps right afier the
last Ietter of the word, while backward motion stops right before the first Ietter.

It is casy to kill a word at a time. Mceta-D (*R Forward Kill Word) kills the word after point. o be
meeise, it kills everytiving from point to the place Mcta-l- would move to. Thus, if pointis in the middlc of a
wortd, only the part after point is killed. 1fsome punctuation comes after point and before the next word, it is

killed along with the word. 1 you wish to kill only the next word but not the punctuation, simply do Meta-F

DA wome W

S TR TS AR
vt g s AL

" g it o s i I s b iy
O e bt b M o

to get the end, and Kill the word backwards with Meta-Rubout. Meta-1) takes aguments just like Meta-F.

Meta-Rubout (*R Backward Kill Word) kills the word before point. It kills everything from puint back to
where Meta-B would move . If point is after the space in "FOO, BAR", "FFOO, " is killed. In such a
situation, to avoid killing the comma and space, do @ Meta-B and a Meta-D instead of a Mcta-Rubout.

Meta-T (*R Transpose Words) moves the cursor forward cver a word, dragging the word preceding or
containing the cwrsor forward as well. A numeric argument serves as a repeat count. A negative argument
undocs the effect of a positive argument; it drags the word behind the cursor backward over a word. An
argument of zero, instead of duing nothing, transposcs the word at point with the word at mark. In any case,
the delimiter characters between the words do not move. For example, “IFOO, BAR™ transposcs into “BAR,
100" rather than "BAR FOQ,".

To operate on the next n words with an operation which applies between point and mark, you can either
sct the mark at point and then move over the words, or you can use the command Meta-@ ("R Mark Word)
whith does not move point. but sets the mark where Meta-FF would move to. ‘They can be given arguments
just like Meta-l°. ‘The case conversion operations have alternative forms that apply to words, since they are

patticularly useful that way.

Note that if you are in Atont Word mode and in | isp mode, all the word commands icgard an entire Lisp

atom as a single word. See section 22.1 [Minor Mades], page 111

The word commands’ understanding of syntax is completely controlled by the syntax table. Any character

can, for example. be declared to be a word delimiter. Sce section 22.4 [Syntax], page 115.

11.2. Sentence and Paragraph Commands

‘The EMACS commands for manipulating sentences and paragsaphs are all Meta- commands, so as to
resemble the word-handling commands.
M-A Maove back to the beginning of the sentence.

M-E Move forward to the end of the sentence.
M-K Kill this or next sentence.

M-| Move back to previous paragraph beginaing.

M-} Move forward to next paragraph end,

M-TT Put point and mak around this paragraph (around the following one, if between
paragrdaphs).

C-X Rubout
Kill back to beginning of sentence,

EMACS Manual for I't'S Users

e

t
$
l
i
]

udan o It | L

o b 4 AU R

i oo 4 Fd 0t b B s o Lo s

' e I bt

D

A

b bt

[T
b 0 vk

i b

s ot 1

Commands for English "Fext 45

11.2.1. Sentences

The commands Meta-A and Mcta-lE ("R Backward Sentence and ~R Forward Sentence) move w the
heginning and cend of the current sentence, respectively. ‘They were chosen to resemble Control-A and
Centrol-I3, wirich move to the beginning and end of a linc. but unlike those Contrel characters Mcta-A and
Mcta-E if repeated move over several sentences. EMACS considers a sentence to end wherever there isa ™."

LY
wan e

or "1" followed by the end of a line or two spaces, with any number of *)™'s, “J™'s. "™"s, or ™ s allowed in

between. Neither M-A nor M-I moves past the CRLF or spaces which delimit the sentence.

ARG

L

Just as C-A and C F hane a kil command. C-K, to go with them. so M-A and M-1: have a conesponding
Lill commands M-K (~R Kill Sentence) which kills fron point to the end of the sentence. With minus once as

an argument it kills back to the beginning of the sentence. Targer arguments serve as & repeat count.
Thete is a speciad comnumd, C-X Rubout (*R Backward Kill Sentence) for killing back (o the beginning

of a sentence. because this is uselul when you change your mind in the middic of composing text,

11.2.2. Paragraphs

‘There are similar comnumds for moving over paragraphs. Met-] ("R Backward Paragraph) moves i the
beginning of the current or previous paragiaph, while Meta-] ("R Forward Paragiaph) maoves to the end of

the current or next paragraph. Blank lines and text justifier comnmand lines separate paagraphs aad are not

.o

part of any paragraph. Also. an indented fine starts a new paragraph.

; In major modes for programs {as oppused to Text mode). paragraphs are determined only by blank lines,
: Ihis makes the paragraph commands continue to be uscful even though there are no paragraphs per se.
When there is a fill prefix, then paragraphs are delimited by all tines which don’t start with the fill prefix.
S When you wish to operate on a paragiaph, you can use the corunand Meta-t (*R Mark Paragraph) to

T prepare. Fhis command puts point at the beginning and mark at the end ef the paragraph point was in.
= Betore setting the new nuark at the end. a ik is sct at the old location o point; this allows you to undo a
mistaken Meta-tl with two C-U C-@7s. If point is between paragraphs (in a run of bk lines, or at a
houndary). the paragraph following point is surrounded by point and mark. "Thus, for example, Meta-11 C-WY

kills the paragraph asound or after point.

Onc way to make an “invisible™ paragraph boundary that does not show if the diie is printed is to put
space-backspace at the front of a line. ‘The space wakes the line appear (to the BEMACS paragraph

conmmands) to be indented, whicih usually means that it starts a paragraph.

K it o

| o o et o o S

i D

g
H
H
g

4o EMACS Manuat for I'T'S Users

“The variable Paragraph Delimiter should be a 'v1ECO search string (Scc section 19.3 [FECO scarch strings].
page 85.) composed of various characters scparated by tO’s. A line whose beginning matches the scarch
string i< cither the beginning of a paragiaph or a text justificr command line part of no paragraph. If the line
begins with period. singlequote, -, “\" or "@", it can be a text justifier command line: otherwise, it can be
the beginning of a paragraph; but it cannot be cither one unless Paragraph Delimiter is set up to recognize it.
Thus, ".+Q ™ as the Paragraph Delimiter string means that lines starting with spaces start paragraphs, lines

stuting with periods are teat justifier commands, and all other nonblank lines are nothing special.

11.3. Indentation Commands for Text

Tab Indents "appropriately” in a mode-dependent fashion.
M-Tub Inserts a tab character.

| incleed Is the same as Return and Fab.

M-~ Undocs a Lincleed. Merges two lincs.

M-M Mores to the tine’s first nonblank character.

M-1 Indent to tab stop. In Text mode, Tab duces this also.
C-M-\ Indent several lines to same column,

C-XTab Shift block of lines rigidly right or left.

The way to request indentation is with the Tab commund. s precise cffect depends on the major mode.
In Text mode. it indents to the next tab stop. You can set the tab stops with Edit Tab Stops (sce below). |:

you just want 1o insert a tab character in the buffer, you can use M-Tab.

IFor Faglish text. usually only the first line of a paragraph should be indented. So, in Text mode, new hnes
created by Auto Fill mode are not indented. This is brought about by sctting the variable Space fndent Flag
to sero. This way, Auto Fill can avoid indenting without denying you the use of Tab to indent. But
sometimes you wait to have an indented paragraph. in such cases, use M-X Edit indented ‘Text, which enters
a submede in which Tab and Auto Iill indent cach line under the previous line, and only blank lines delimit

paragraphs. Alternatively, you can specify a fill prefix (sce below).

To undo a linc-break, whether done manualiy or by Auto Fill, use the Meta-~ (*R Delete Indentation)
command o delete the indentation at the front of the cunient line, and the line boundary as well. They are
replaced by a single space, or by no space if before a ™) or after a "(", or at the beginning of a line. "Fo delete
just the indentation of a linc, go to the beginning of the line and use Meta-\ {*R Delete Horizontal Space),
which deletes all spaces and tabs around the cursor.

To fasert an indented line befure the cusrent one, do C-A, C-0, and then Tab. “To make an indented lianc
after the current one, use C-E Linefeed.

To move over the indentation on a line, do Mcta-M or C-M-M {*R Back to Indentation). ‘These

Comniands tor English Fext

commands, given anywhere on a line, position the cursor at the first nonblank character on the line.

There are also commands for changing the indentation of scveral lines at once.

(“R Indent Region) gives cach line whaose first character is between 1

Control-Mcta-\

. 't and mark the "usual” indentation
(as determined by Tab), With a numeric argument, it gives cach line precisely that much indentation, C-X

Tab (R Indent Rigidly) moves all of the lines in the region right by its argument (left. for negative
argementsy.

Usually. EMACS uses both tabs and spaces to indent. 1f you don’t want that, you can use M-X Indent
Tabs Mode to turn the use of tabs on or off. To convert all tubs in a file to spaces, you can ase M-X Untabify,
whose wrgument is the number of positions to assume between tab stops (default is 8). M-X Tabify performs
the opposite tasstormation., replacing spaces with tabs whenever possible. but only il there are at least three

ol them su as not tw vi- ure ends of sentences. The visual appeirance of the text should never be changed by
Tubify or Untabify.

11.3.1. Tab Stops

FFor typing in tables, you can usc Text mouc’s delinition of Tab, ~R “Tab to Tab Stop, which may be givea
anywhere in a line. and indents from there to the neat tab stop. If you are not in Text made, this function can
be found on M- anyway.

Set the tab stops using Edit Tab Stops, which displiys fer you a buffer whose contents define the tab stops
The first line contains a colon or period at cach tab stop. Colon indicates an ordinary tah, which fills with
whitespace; @ period specifies that characters he copied from the corresponding columns of the second line
befow it. Thus, you can tab (o a colmnn antomatically inserting dashes or periods, cte. It is your
responsibility to put in the second line the text to be copied. The third and fourth lines you see contain
column numbers o help you edit. They are only there while vou are editing the tab stops; they are not really
part of the tab scttings. The first two lines reside in the variable Tab Stop Definitions when they are not being
edited. If the sccond line is not needed, Tab Swp Definitions can be just one fie, with no CRLEs. “This

makes it casicr to set the variable in a local modes list. See sectien 22.6 [1ocals], page 118.

114, Text Filling

Space i Auto Fill mode, breaks lines when appropriate.
M-Q 1l paragraph.

M-G Fill region (G is for Grind, by analogy with Lisp).
M-S Centeraline.

C-X = Show curicnt cursor position.

et 31 b W] D i

i

s
o ol e W ot L T

e

i

e

=

¥
]
3
¥
H
H
£
H
H
3

48 EMACS Manual for 'ES Users

EMACS 5 Auto Fill mode lets you type in text that is filled (broken up into lines that fit in & specified

widih) as you zo. f you alter existing text and thus cause it to cezse to be properiy filled, EMACS can fill it
again if you ask.

Entering Auto Fill mode is done with M-X Auto Fill. From then on, lines are breken antomatically at

spaces when they get longer than the desired width. New lines are usually indented. but in Text mode they
arc not. ‘To leave Auto Fill mode. cxecute M-X Auto Fill again.

When you finish a paragraph. you can type Space with.an argumcnt of zero. ‘This docsn’t insert any

spaces, but it does move the last word of the paragraph to a new line if it deesu’t fit in the old line. Return
also moves the last word, but it creates another blana line.

If you cdit the middle of a paragraph. it may no longer be c